Sistem Pendukung Keputusan Penentuan Matakuliah Pilihan Menggunakan Metode TOPSIS (Studi Kasus : Prodi S1 Sistem Informasi FMIPA Universitas Riau)

Sukamto¹, Aidil Fitriansyah², Rangga Putra Pratama³

1,2,3 Program Studi Sistem Informasi, FMIPA Universitas Riau Kampus Bina Widya Km. 12,5 Simpang Baru, Pekanbaru, Riau, 28293 e-mail: 1 sukamto@lecturer.unri.ac.id, 2 aidil.fitriansyah@lecturer.unri.ac.id, 3 rangga.putra@gmail.com

Abstrak

Matakuliah pilihan juga merupakan matakuliah yang penting, karena pengetahuan dari matakuliah pilihan dapat membantu mahasiswa dalam matakuliah lainnya, skripsi bahkan dalam pekerjaan kedepannya. Maka dari itu, penentuan matakuliah pilihan tidak boleh sembarangan. Tujuan penelitian ini adalah untuk membuat suatu sistem pendukung keputusan berbasis Web untuk membantu mahasiswa Sistem Informasi FMIPA Universitas Riau dalam menentukan matakuliah pilihan yang akan dipilih menggunakan metode Technique for Order Performance of Similarity to Ideal Solution (TOPSIS). TOPSIS mempunyai prinsip bahwa alternatif yang terpilih harus mempunyai jarak terdekat dari solusi ideal positif dan mempunyai jarak terjauh dari solusi ideal negatif. Sistem yang dihasilkan dapat membantu mahasiswa dalam memilih matakuliah pilihan dengan menggunakan kriteria seperti tingkat kesulitan, referensi, lapangan pekerjaan, minat dan bakat. Hasil akhir dari sistem ini adalah lembar hasil perhitungan yang nilai preferensinya telah diurutkan dari yang tertinggi ke terendah. Alternatif dengan nilai tertinggi adalah matakuliah yang direkomendasikan untuk dipilih. Untuk kasus mahasiswa semester IV matakuliah pilihan berdasarkan rangking adalah Data Mining, Perancangan Sumber Daya Perusahaan, dan Pengolahan Citra Digital.

Kata kunci: Matakuliah Pilihan , Sistem Pendukung Keputusan, Metode TOPSIS.

Abstract

Elective courses are as important as other courses, because knowledge from the elective courses can help college students in other courses, minithesis even in the future work. Therefore, determination of elective courses should not be carelessly. The purpose of this research was to make a web-based decision support system to help Riau University Information System's college students in determining the elective courses to be chosen using Technique for Order Performance of Similarity to Ideal Solution (TOPSIS) method. TOPSIS has the principle that the chosen alternative must have the shortest distance from the positive ideal solution and have the farthest distance from the negative ideal solution. The resulting system could help students in choosing elective courses using criteria such as level of difficulty, reference, employment, interests and talents. The final result of this system was a calculation result sheet whose preference values had been sorted from highest to lowest. The alternative with the highest score was the recommended course to choose. For the case of fourth semester students the elective courses based on ranking are Data Mining, Enterprise Resource Design, and Digital Image Processing.

Keywords: Decision Support System, Elective Courses, TOPSIS Method.

1. Pendahuluan

Berdasarkan buku pedoman FMIPA Universitas Riau Tahun Akademik 2017/2018, program studi S1 Sistem Informasi memiliki tiga jenis matakuliah, yaitu matakuliah wajib, matakuliah wajib minat, dan matakuliah pilihan. Matakuliah pilihan merupakan matakuliah yang bebas dipilih oleh mahasiswa dengan ketentuan minimal 9 SKS (Satuan Kredit Semester).

Meskipun hanya matakuliah pilihan, penentuan pemilihannya tidak boleh dianggap asal pilih saja. Salah satu masalah yang sering terjadi pada waktu pengisian KRS adalah mahasiswa menentukan matakuliah pilihan yang akan diambil berdasarkan instuisi, pilihan teman, dosen yang baik dalam memberi nilai, atau jadwal yang diinginkan tanpa memperdulikan akibat atau efek yang akan ditimbulkan nantinya.

Adapun tujuan penelitian ini adalah membangun sistem pengambilan keputusan yang dapat menentukan matakuliah pilihan yang akan diambil mahasiswa pada semester tertentu berdasarkan perangkingan matakuliah pilihan (alternatif) yang diurutkan dari nilai preferensi (v_i) yang tertinggi, khususnya di program studi S1 Sistem Informasi Jurusan Ilmu Komputer FMIPA Universitas Riau menggunakan metode TOPSIS.

Pengambilan keputusan adalah proses untuk memilih tindakan diantara beberapa alternatif yang ada, sehingga apa yang menjadi tujuan dapat tercapai [1]. Beberapa penelitian yang membahas tentang metode TOPSIS antara lain, metode TOPSIS untuk menentukan alternatif yang akan dipilih tidak hanya memperhitungkan nilai yang terdekat dengan solusi ideal positif, tetapi juga nilai terjauh dengan solusi ideal negatifnya [2]. Prinsip dalam metode TOPSIS untuk menentukan alternatif yang terpilih harus mempunyai jarak terdekat dari solusi ideal positif dan juga jarak terjauh dari solusi ideal negatif, dengan menggunakan jarak euclidean untuk menentukan kedekatan relatifnya [3]. Metode TOPSIS digunakan untuk perhitungan perangkingan yang memberikan hasil yang sama [4].

Selanjutnya metode TOPSIS banyak digunakan dalam beberapa kasus, antara lain, menentukan penerimaan mahasiswa baru [5], penilaian tingkat kinerja karyawan [6], penerimaan guru kehormatan [7], perangkingan kualitas padi [8], dan rekomendasi evaluasi dosen [9].

Penelitian tentang pemilihan matakuliah pilihan sudah dibahas dengan menggunakan metode AHP yang menyimpulkan bahwa SPK dapat membantu mahasiswa dalam memilih matakuliah pilihan berdasarkan bobot [10].

2. Metode Penelitian

2.1. Pengumpulan Data

Proses pengumpulan data dilakukan di program studi S1 Sistem Informasi, jurusan Ilmu Komputer FMIPA Universitas Riau, yang meliputi data kurikulum dan data kriteria penilaian.

2.2. Analisa Sistem

Metode TOPSIS adalah salah satu metode pengambilan keputusan, yang ide dasarnya adalah alternatif yang dipilih memiliki jarak terdekat dengan solusi ideal dan memiliki jarak terjauh dengan solusi ideal negatif, dengan langkah-langkah sebagai berikut [11]:

a) Membuat matriks keputusan yang ternormalisasi ($r=[r_{ii}]$), dengan

$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^2}} \tag{1}$$

dimana i = 1, 2, ..., n; r_{ij} adalah matriks ternormalisasi, dan x_{ij} adalah matriks keputusan.

b) Menentukan matriks keputusan ternormalisasi terbobot ($y=[y_{ij}]$), dengan

$$y_{ij} = w_j r_{ij} \tag{2}$$

dimana i = 1,2,...,n; j = 1,2,...,m; w_j adalah bobot kriteria, dan y_{ij} adalah matriks keputusan yang ternormalisasi terbobot.

c) Menentukan matriks solusi ideal positif (A^+) dan matriks solusi ideal negatif (A^-) , yaitu :

$$A^{+} = (y_{1}^{+}, y_{2}^{+}, \cdots, y_{i}^{+})$$
 (3)

$$A^{-} = (y_1^{-}, y_2^{-}, \dots, y_i^{-})$$
 (4)

dengan
$$y_{j^{+}} = \begin{cases} \max \ y_{ij} \ , \text{jika } j = \text{keuntungan} \\ \min \ y_{ij} \ , \text{jika } j = \text{biaya} \end{cases}$$

$$y_{j^{-}} = \begin{cases} \min \ y_{ij} \ , \text{jika } j = \text{keuntungan} \\ \max \ y_{ij} \ , \text{jika } j = \text{biaya} \end{cases}$$
(6)

Like kriterie bereifet Parafit (mekin beser mekin beik) meke at a s

$$y_{j-} = \begin{cases} \min \ y_{ij} \ , \text{jika } j = \text{keuntungan} \\ \max \ y_{ij} \ , \text{jika } j = \text{biaya} \end{cases}$$
 (6)

Jika kriteria bersifat *Benefit* (makin besar makin baik) maka $y_{i}^{+} = \max y_{ij}$ dan min y_{ij} .

 y_{j} = min y_{ij} dan max y_{ij} . Jika kriteria bersifat *Cost* (makin kecil makin baik) maka

- d) Menentukan jarak antara nilai setiap alternatif dengan matriks solusi ideal positif (d_{i+}) dan matriks solusi ideal negatif (d_{i-}).
 - Jarak solusi ideal positif (d_i+), yaitu :

$$d_{i^{+}} = \sqrt{\sum_{j=1}^{m} (y_{j^{+}} - y_{ij})^{2}}$$
 (7)

dimana $i = 1,2,..., n; d_{i+}$ adalah jarak alternatif A_i dengan solusi ideal positif, y_{j+} adalah solusi ideal positif [i], dan y_{ij} adalah matriks normalisasi terbobot [i][j].

Jarak solusi ideal positif (d_i-), yaitu :

$$d_{i^{-}} = \sqrt{\sum_{j=1}^{m} (y_{ij} - y_{j^{-}})^{2}}$$
 (8)

dimana

 $i = 1,2,...,n; d_i$ - adalah jarak alternatif A_i dengan solusi ideal negative, y_i - adalah solusi ideal negatif [i], dan y_{ij} adalah matriks normalisasi terbobot [i][j]

e) Menentukan nilai preferensi (v_i) untuk setiap alternatif:

$$v_i = \frac{d_i^-}{d_i^- + d_i^+} \tag{9}$$

dimana v_i adalah kedekatan tiap alternatif terhadap solusi ideal, d_i^+ adalah jarak alternatif A_i dengan solusi ideal positif, d_i adalah jarak alternatif A_i dengan solusi ideal negatif.

Nilai v_i yang lebih besar menunjukkan bahwa alternatif A_i lebih dipilih.

f) Perangkingan

Alternatif dapat dirangking berdasarkan hasil nilai preferensi v_i yang sudah didapat. Alternatif terbaik adalah salah satu yang berjarak terpendek terhadap solusi ideal dan berjarak terjauh dengan solusi ideal negatif.

2.3. Desain Sistem

Pembuatan Use Case Diagram dan Class Diagram

2.4. Implementasi Sistem

Menggunakan bahasa pemrograman HTML dan PHP, serta MySQL sebagai database.

3. Hasil dan Pembahasan

Penelitian sebelumnya tentang pemilihan matakuliah pilihan sudah dibahas dengan menggunakan metode AHP, sedangkan pada penelitian ini menggunakan metode TOPSIS.

3.1. Pengumpulan Data

Hasil pengumpulan data matakuliah pilihan sebagaimana pada Tabel 1.

Tabel 1. Data Matakuliah Pilihan

No	Kode	Matakuliah	SKS	Semester
1	MAS2231	Pengolahan Citra Digital	3	4
2	MAS2232	Perancangan Sumber Daya Perusahaan	3	4
3	MAS2233	Data Mining	3(2-1)	4
4	MAS3131	Business Intelligence	3	5
5	MAS3132	Sistem Terdistribusi	3	5
6	MAS3133	Sistem Temu Kembali Informasi	3	5
7	MAS3134	Web Lanjut	3(2-1)	5
8	MAS3231	Analisis Proses Bisnis	3	6
9	MAS3232	Tatakelola dan Audit Sistem Informasi	3	6
10	MAS3233	Pemodelan Data Spasial SPK	3(2-1)	6
11	MAS3234	Pengindraan Jarak Jauh	3	6

Kriteria matakuliah pilihan dapat dilihat pada Tabel 2, sedangkan bobotnya pada Tabel 3.

Tabel 2. Kriteria Matakuliah Pilihan

Kriteria	Nama Kriteria	Nilai Bobot (w _i)	Keterangan
C1	Tingkat Kesulitan	4	Cost
C2	Referensi	3	Benefit
C3	Lapangan Pekerjaan	3	Benefit
C4	Minat	3	Benefit
C5	Bakat	3	Benefit

Tabel 3. Keterangan Nilai Bobot

Nilai Bobot (w _j)	Keterangan
1	Sangat Rendah
2	Rendah
3	Cukup Tinggi
4	Tinggi
5	Sangat Tinggi

Analisa dibagi menjadi dua kasus, yaitu:

1) Mahasiswa semester IV yang hanya dapat mengambil matakuliah pilihan semester IV, dengan data alternatif sebagaimana pada Tabel 4.

Tabel 4. Penilaian Alternatif Semester IV

Alternotif	Nama Alternatif	Kriteria					
Anemani	Nama Aitematii	C1	C2	C3	C4	C5	
A1	Pengolahan Citra Digital	5	4	4	4	2	
A2	Perancangan Sumber Daya Perusahaan	3	3	4	3	3	
A3	Data Mining	4	3	4	5	3	

Atau mahasiswa semester V yang hanya mengambil matakuliah pilihan semester V, dengan data alternatif sebagaimana pada Tabel 5.

eISSN: 2477-3255, pISSN: 2086-4884 https://doi.org/10.31849/digitalzone.v11i1.3511

Altamatif	ntif Nama Alternatif		Kriteria						
Anemani			C2	C3	C4	C5			
A1	Business Intelligence	5	3	4	3	2			
A2	Sistem Terdistribusi	4	3	4	3	4			
A3	Sistem Temu Kembali Informasi	4	3	4	3	4			
A4	Web Lanjut	5	4	4	4	3			

Tabel 5. Penilaian Alternatif Semester V

2) Mahasiswa semester VI yang dapat mengambil matakuliah pilihan pada semester IV dan VI, dengan data alternatif sebagaimana pada Tabel 6.

Alternatif	if Nama Alternatif		Kriteria					
Anemani			C2	C3	C4	C5		
A1	Pengolahan Citra Digital	3	4	4	3	4		
A2	Perancangan Sumber Daya Perusahaan	3	2	4	2	3		
A3	Data Mining	3	2	3	5	3		
A4	Analisis Proses Bisnis	4	2	3	2	3		
A5	Tatakelola dan Audit Sistem Informasi	3	4	3	4	4		
A6	Pemodelan Data Spasial SPK	5	2	3	3	3		
A7	Pengindraan Jarak Jauh	4	3	3	3	2		

Tabal 6 Panilaian Alternatif Samastar VI

3.2. Analisa Sistem

- Kasus mahasiswa semester IV yang hanya dapat mengambil matakuliah pilihan semester IV Langkah perhitungan metode TOPSIS adalah sebagai berikut :
- a) Membuat matriks keputusan yang ternormalisasi ($r = [r_{ij}]$), Dengan menggunakan Tabel 4 dan persamaan (1), diperoleh:

dan persamaan (1), diperoleh:
$$r_{11} = \frac{5}{\sqrt{5^2 + 3^2 + 4^2}} = 0.70711$$

Dengan cara yang sama diperoleh r_{ij} sehingga diperoleh matriks keputusan ternomalisasi r, vaitu

itu:
$$r = \begin{pmatrix} 0.70711 & 0.68599 & 0.57735 & 0.56569 & 0.42640 \\ 0.42426 & 0.51450 & 0.57735 & 0.42426 & 0.63960 \\ 0.56569 & 0.51450 & 0.57735 & 0.70711 & 0.63960 \end{pmatrix}$$

b) Menentukan matriks keputusan ternormalisasi terbobot ($y = [y_{ij}]$)

Dari Tabel 4 diperoleh W = bobot preferensi (5, 4, 4, 4, 2), sehingga dengan menggunakan persamaan (2), diperoleh $y_{11} = 5 \times 0.70711 = 3.53555$

Dengan cara yang sama diperoleh y_{ij} , sehingga diperoleh matriks keputusan ternomalisasi terbobot y, yaitu:

$$y = \begin{pmatrix} 3.53553 & 2.74398 & 2.30940 & 2.26274 & 0.85280 \\ 1.27279 & 1.54349 & 2.30940 & 1.27279 & 1.91881 \\ 2.26274 & 1.54349 & 2.30940 & 3.53553 & 1.91881 \end{pmatrix}$$

- c) Menentukan matriks solusi ideal positif (A^+) dan matriks solusi ideal negatif (A^-) :
 - Menentukan matriks solusi ideal positif (A^+)

Dengan menggunakan persamaan (5), diperoleh $y_1 + = min$ (3.53553; 1.27279; 2.26274) = 1.27279

$$y_{2+} = max (2.74398; 1.54349; 1.54349) = 2.74398$$

 $y_{3+} = max (2.30940; 2.30940; 2.30940) = 2.30940$
 $y_{4+} = max (2.26274; 1.27279; 3.53553) = 3.53553$
 $y_{5+} = max (0.85280; 1.91881; 1.91881) = 1.91881$

Sehingga dengan menggunakan persamaan (3)diperoleh: $A^+ = (1.27279; 2.74398; 2.30940; 2.26274; 1.91881).$

• Menentukan matriks solusi ideal negatif (A)

Dengan menggunakan persamaan (6), diperoleh
$$y_1$$
-= max (3.53553; 1.27279; 2.26274) = 3.53553 y_2 -= min (2.74398; 1.54349; 1.54349) = 1.54349 y_3 -= min (2.30940; 2.30940; 2.30940) = 2.30940 y_4 -= min (2.26274; 1.27279; 1.91881) = 1.27279 y_5 -= min (0.85280; 1.91881; 1.91881) = 0.85280

Sehingga dengan menggunakan persamaan (4) diperoleh $A^- = (3.53553; 1.54349; 2.30940; 1.27279; 0.85280).$

- d) Menentukan jarak antara nilai setiap alternatif dengan matriks solusi ideal positif (d_{i+}) dan matriks solusi ideal negatif (d_{i-}) .
 - Jarak solusi ideal positif (d_{i+}) , yaitu : Dengan menggunakan matriks ternormalisasi terbobot dan persamaan (7), maka :

$$d_{1+} = \sqrt{\frac{\left(1.27279 - 3.53553\right)^{2} + \left(2.74398 - 2.74398\right)^{2} + \left(2.30940 - 2.30940\right)^{2}}{+ \left(2.26274 - 3.53553\right)^{2} + \left(1.91881 - 0.85280\right)^{2}}} = 2.80648$$

Dengan cara yang sama, diperoleh d_{i+} , yaitu $d_{2+} = 2.56147$ dan $d_{3+} = 1.55601$

• Jarak solusi ideal positif (d_i-), yaitu :

Dengan menggunakan matriks ternormalisasi terbobot persamaan (8), maka :

$$d_{1}- = \sqrt{\frac{(3.53553 - 3.53553)^{2} + (2.743398 - 1.54349)^{2} + (2.30940 - 2.30940)^{2} + (2.26274 - 1.27279)^{2} + (0.85280 - 0.85280)^{2}} =$$

1.55601

Dengan cara yang sama, diperoleh d_i -, yaitu d_2 - = 2.50127 dan d_3 - = 2.80648

e) Menentukan nilai preferensi (v_i) untuk setiap alternatif.

Dengan menggunakan persamaan (9), maka

$$v_1 = \frac{1.55601}{1.55601 + 2.80648} = 0.35667$$

$$v_2 = \frac{2.50127}{2.50127 + 2.56147} = 0.49405$$

$$v_3 = \frac{2.80648}{2.80648 + 1.55601} = 0.64332$$

f) Perangkingan

Alternatif dapat dirangking berdasarkan hasil nilai preferensi v_i yang sudah didapat. Dari hasil perhitungan di atas, hasil perangkingan dapat dilihat pada Tabel 7.

Alternatif		ŀ	Kriteria	ì		Nilai	Danalsina		
Alternatif	C1	C2	C3	C4	C5	Preferensi	Rangking		
A1	5	4	4	4	2	0.35667	3		
A2	3	3	4	3	3	0.49405	2		
A3	4	3	4	5	3	0.64332	1		

Berdasarkan Tabel 7, v_3 merupakan nilai preferensi tertinggi yaitu 0.64332. Sehingga diperoleh bahwa alternatif A3 (Data Mining) yang merupakan matakuliah pilihan prioritas yang perlu dipertimbangkan untuk diambil.

- 2) Mahasiswa semester VI yang dapat mengambil matakuliah pilihan pada semester IV dan VI Langkah perhitungan metode TOPSIS adalah sebagai berikut:
- a) Membuat matriks keputusan yang ternormalisasi ($r = [r_{ij}]$), Dengan menggunakan Tabel 6 dan persamaan (1), diperoleh:

$$r_{11} = \frac{3}{\sqrt{3^2 + 3^2 + 3^2 + 4^2 + 3^2 + 5^2 + 4^2}} = 0.31108$$

Dengan cara yang sama diperoleh r_{ij} sehingga diperoleh matriks keputusan ternomalisasi r, yaitu:

$$r = \begin{pmatrix} 0.31108 & 0.52981 & 0.45584 & 0.34412 & 0.47140 \\ 0.31108 & 0.26490 & 0.45584 & 0.22941 & 0.35355 \\ 0.31108 & 0.26490 & 0.34188 & 0.57353 & 0.35355 \\ 0.41478 & 0.26490 & 0.34188 & 0.22941 & 0.35355 \\ 0.31108 & 0.52981 & 0.34188 & 0.45883 & 0.47140 \\ 0.51847 & 0.26490 & 0.34188 & 0.34412 & 0.35355 \\ 0.41478 & 0.39736 & 0.34188 & 0.34412 & 0.23570 \end{pmatrix}$$

b) Menentukan matriks keputusan ternormalisasi terbobot ($y = [y_{ij}]$)

Dari Tabel 5 diperoleh W = bobot preferensi (3, 4, 4, 3, 4), sehingga dengan menggunakan persamaan (2), diperoleh $y_{II} = 3 \times 0.31108 = 0.93324$

Dengan cara yang sama diperoleh y_{ij} , sehingga diperoleh matriks keputusan ternomalisasi terbobot y, yaitu:

$$y = \begin{pmatrix} 0.93326 & 2.11925 & 1.82337 & 1.03237 & 1.88562 \\ 0.93326 & 0.52981 & 1.82337 & 0.45883 & 1.06066 \\ 0.93326 & 0.52981 & 1.02565 & 2.86770 & 1.06066 \\ 1.65912 & 0.52981 & 1.02565 & 0.45883 & 1.06066 \\ 0.93326 & 2.11925 & 1.02565 & 1.83533 & 1.88562 \\ 2.59238 & 0.52981 & 1.02565 & 1.03237 & 1.06066 \\ 1.65912 & 1.19208 & 1.02565 & 1.03237 & 0.47140 \end{pmatrix}$$

- c) Menentukan matriks solusi ideal positif (A^+) dan matriks solusi ideal negatif (A^-) :
 - Menentukan matriks solusi ideal positif (A⁺)

```
Dengan menggunakan persamaan (5), diperoleh y_1 + = min \ (0.93326; 0.93326; 0.93326; 1.65912; 0.93326; 2.59238; 1.65912) = 0.93326 y_2 + = max \ (2.11925; 0.52981; 0.52981; 0.52981; 2.11925; 0.52981; 1.19208) = 2.11925
```

 $y_{3+} = max$ (1.82337; 1.82337; 1.02565; 1.02565; 1.02565; 1.02565; 1.02565) = 1.82337 $y_{4+} = max$ (1.03237; 0.45883; 2.86770; 0.45883; 1.83533; 1.03237; 1.03237) = 2.86770 $y_{5+} = max$ (1.88562; 1.06066; 1.06066; 1.06066; 1.88562; 1.06066; 0.47140) = 1.88562 Sehingga dengan menggunakan persamaan (3)diperoleh: $A^{+} = (0.93326, 2.11925, 1.82337, 2.86770, 1.88562)$.

• Menentukan matriks solusi ideal negatif (A)

Dengan menggunakan persamaan (6), diperoleh y_1 -= max (0.93326; 0.93326; 0.93326; 1.65912; 0.93326; 2.59238; 1.65912) = 2.59238 y_2 -= min (2.11925; 0.52981; 0.52981; 0.52981; 2.11925; 0.52981; 1.19208) = 0.52981 y_3 -= min (1.82337; 1.82337; 1.02565; 1.02565; 1.02565; 1.02565; 1.02565) = 1.02565 y_4 -= min (1.03237; 0.45883; 2.86770; 0.45883; 1.83533; 1.03237; 1.03237) = 0.45883 y_5 -= min (1.88562; 1.06066; 1.06066; 1.88562; 1.06066; 0.47140) = 0.47140 Sehingga dengan menggunakan persamaan (4) diperoleh A-= (2.59238; 0.52981; 1.02565; 0.45883; 0.47140).

- d) Menentukan jarak antara nilai setiap alternatif dengan matriks solusi ideal positif (d_{i^+}) dan matriks solusi ideal negatif (d_{i^-}) .
 - Jarak solusi ideal positif (d_i+), yaitu :
 Dengan menggunakan matriks ternormalisasi terbobot dan persamaan (7), maka :

$$d_{1^{+}} = \sqrt{\frac{(0.93326 - 0.93326)^{2} + (2.11925 - 2.11925)^{2} + (1.82337 - 1.82337)^{2}}{+ (2.86770 - 1.03237)^{2} + (1.88562 - 1.88562)^{2}}} =$$

1.83533

Dengan cara yang sama, diperoleh d_{i+} , yaitu $d_{2+} = 3.00158$, $d_{3+} = 1.96042$, $d_{4+} = 3.18947$, $d_{5+} = 1.30467$, $d_{6+} = 3.15663$, dan $d_{7+} = 2.71870$

• Jarak solusi ideal positif (d_i-), yaitu :

Dengan menggunakan matriks ternormalisasi terbobot persamaan (8), maka:

$$d_{1^{-}} = \sqrt{\frac{\left(0.93326 - 2.59238\right)^{2} + \left(2.11925 - 0.52981\right)^{2} + \left(1.82337 - 1.02565\right)^{2}}{+ \left(1.03237 - 0.45883\right)^{2} + \left(1.88562 - 0.47140\right)^{2}}} = 2.87129$$

Dengan cara yang sama, diperoleh d_i -, yaitu d_2 - = 1.93294, d_3 - = 2.98371, d_4 - = 1.10372, d_5 - = 3.02882, d_6 - = 0.82230, dan d_7 - = 1.28004

e) Menentukan nilai preferensi (v_i) untuk setiap alternatif.

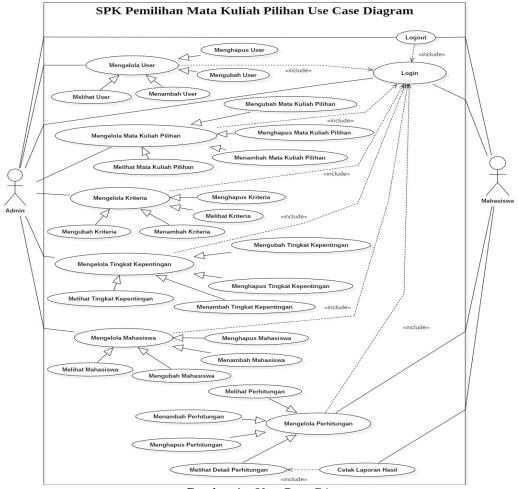
Dengan menggunakan persamaan (9), maka

$$v_1 = \frac{2.87129}{2.87129 + 1.83533} = 0.61005$$

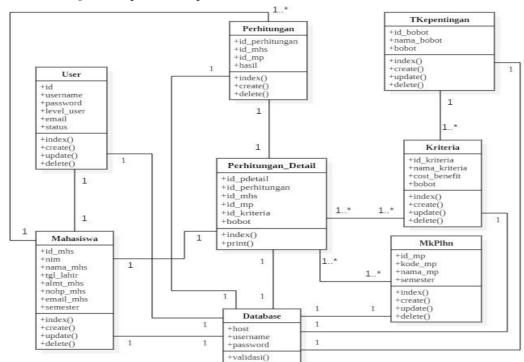
Dengan cara yang sama, diperoleh v_i , yaitu $v_2 = 0.39172$, $v_3 = 0.60349$, $v_4 = 0.25708$, $v_5 = 0.69893$, $v_6 = 0.20666$, dan $v_7 = 0.32011$

f) Perangkingan

Alternatif dapat dirangking berdasarkan hasil nilai preferensi v_i yang sudah didapat. Dari hasil perhitungan di atas, hasil perangkingan dapat dilihat pada Tabel 8.


Tabel 8. Hasil Perangkingan Kasus Semester VI

0 0								
Alternatif		ŀ	Kriteria	ì		Nilai	Rangking	
Anemani	C1	C2	C3	C4	C5	Preferensi		
A1	3	4	4	3	4	0.61005	2	
A2	3	2	4	2	3	039172	4	
A3	3	2	3	5	3	0.60349	3	
A4	4	2	3	2	3	0.25708	7	
A5	3	4	3	4	4	0.69893	1	
A6	5	2	3	3	3	0.30666	6	
A7	4	3	3	3	2	0.32011	5	


Berdasarkan Tabel 8, v_5 merupakan nilai preferensi tertinggi yaitu 0.69893. Sehingga diperoleh bahwa alternatif A5 (Tatakelola dan Audit Sistem Informasi) yang merupakan matakuliah pilihan prioritas yang perlu dipertimbangkan untuk diambil.

3.3. Desain Sistem

a) Use case diagram: dapat dilihat pada Gambar 1.

Gambar 1. Use Case Diagram

b) Class Diagram: dapat dilihat pada Gambar 2.

Gambar 2. Class Diagram

3.4. Implementasi Sistem

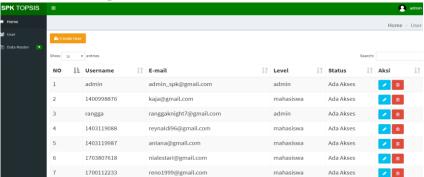
Dalam sistem ini, pengguna dibagi menjadi dua, yaitu :

- a) *Admin*, yang mempunyai hak akses meliputi mengelola data mahasiswa, data matakuliah pilihan, data kriteria, dan data bobot.
- b) Mahasiswa (user), yang mempunyai hak akses mengelola data perhitungan.

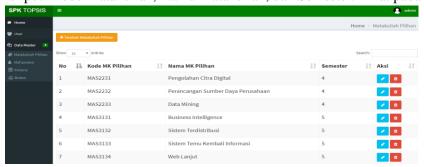
Adapun hasil implementasi adalah sebagai berikut:

a) Tampilan Halaman *Login:* digunakan untuk mengatur hak akses pengguna sistem (*admin* atau *user*), dimana *admin* atau *user* harus menginputkan *username* dan *password* untuk bisa masuk ke sistem. Lihat pada Gambar 3.

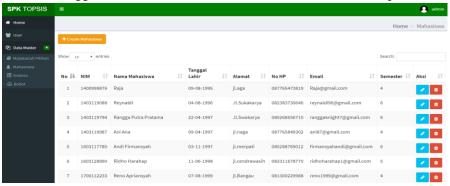
Gambar 3. Halaman Login


b) Tampilan Halaman Utama: jika *login* yang dilakukan oleh *admin* benar, maka akan tampil halaman utama untuk *admin*. Lihat Gambar 4. Sedangkan untuk *user* akan langsung ke tampilan perhitungan (Gambar 10).

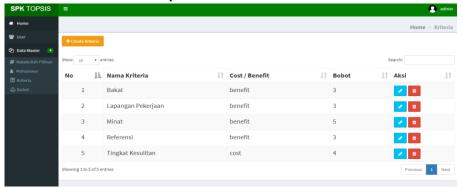
Gambar 4. Halaman Utama Admin


Pada Menu Data Master terdapat submenu Matakuliah Pilihan, Mahasiswa, Kriteria, dan Bobot.

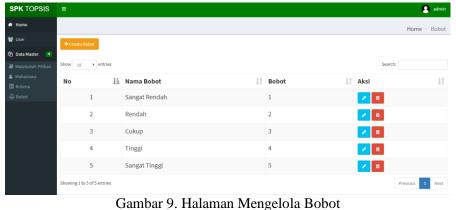
c) Tampilan Halaman Mengelola *user*, dimana *admin* dapat mengelola data *user*, seperti menambah, mengubah, menghapus, serta mencari, yang meliputi *Username*, *E-mail*, *Level*, dan Status. Lihat pada Gambar 5.


Gambar 5. Halaman Mengelola User

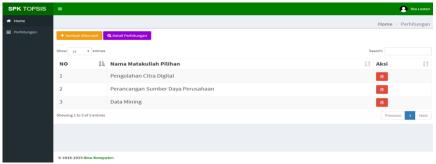
d) Tampilan Halaman Mengelola Matakuliah Pilihan, dimana *admin* dapat mengelola data matakuliah pilihan yang ada, seperti menambah, mengubah, menghapus, serta mencari, yang meliputi Kode Matakuliah, Nama Matakuliah, dan Semester. Lihat pada Gambar 6.


Gambar 6. Halaman Mengelola Matakuliah Pilihan

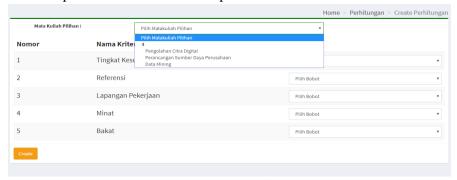
e) Tampilan Halaman Mengelola mahasiswa, dimana *admin* dapat mengelola data Mahasiswa, seperti menambah, mengubah, menghapus, serta mencari, yang NIM, Nama Mahasiswa, Tanggal Lahir, Alamat, No. HP, E-mail, Semester. Lihat pada Gambar 7.


Gambar 7. Halaman Mengelola Mahasiswa

f) Tampilan Halaman Mengelola Kriteria, dimana admin dapat mengelola data kriteria, seperti menambah, mengubah, menghapus, serta mencari, yang meliputi Nama Kriteria, Cost/Benefit, dan Bobot. Lihat pada Gambar 8.


Gambar 8. Halaman Mengelola Kriteria

g) Tampilan Halaman Mengelola Bobot, dimana *admin* dapat mengelola data bobot, seperti menambah, mengubah, menghapus, serta mencari, yang meliputi Nama Bobot dan Bobot. Lihat pada Gambar 9.


eISSN: 2477-3255, pISSN: 2086-4884 https://doi.org/10.31849/digitalzone.v11i1.3511

h) Tampilan Halaman Mengelola Perhitungan, yang bisa diakses oleh *user* (mahasiswa), dimana pada halaman ini mahasiswa dapat menambah ataupun menghapus data perhitungan. Lihat pada Gambar 10.

Gambar 10. Halaman Mengelola Perhitungan

i) Tampilan Halaman Tambah Perhitungan, tergantung semester mahasiswa (IV, V, VI), jika mahasiswa semester IV, maka matakuliah pilihan yang ditampilkan adalah matakuliah pilihan semester IV. Lihat pada Gambar 11.

Gambar 11. Halaman Mahasiswa Semester IV

Mahasiswa memilih matakuliah yang ditampilkan, memilih bobot sesuai dengan Nama Kriteria yang disediakan. Ulangi untuk matakuliah pilihan yang lain. Selanjutnya untuk proses perhitungan klik tombol *Create*.

- j) Tampilan Halaman Detail Perhitungan, merupakan tampilan halaman hasil perhitungan dari data yang telah di *input*. Adapun tampilannya terdiri dari:
 - Hasil Perhitungan, lihat pada Gambar 12.

Gambar 12. Halaman Hasil Perhitungan

- Matriks Ternormalisasi, lihat Gambar 13.

	C1	C2	C 3	C4	C 5			
Pembagi	7,0710678	5,8309519	6,9282032	7,0710678	4,6904158			
Data Matriks Keputusan yang Ternormalisasi								
Alternatif	C1	C2	C 3	C4	C 5			
Pengolahan Citra Digital	0,707106	0,6859943	0,5773503	0,5656854	0,4264014			
Perancangan Sumber Daya Perusahaan	0,424264	0,5144958	0,5773503	0,4242641	0,6396021			
Data Mining	0,565685	4 0.5144958	0.5773503	0,7071068	0,6396021			

Gambar 13. Halaman Matriks Ternormalisasi

- Matriks Terbobot, lihat Gambar 14.

Alternatif C1 C2 C3 C4 C5									
Atternatii	CI	CZ	CS	C4	CS				
Pengolahan Citra Digital	2,8284271	2,0579830	1,7320508	2,8284271	1,2792043				
Perancangan Sumber Daya Perusahaan	1,6970563	1,5434873	1,7320508	2,1213203	1,9188064				
Data Mining	2,2627417	1,5434873	1,7320508	3,5355339	1,9188064				
Data	Nilai Solusi Posit	tif(Δ+) dan Neg	ratif(A-)						
Data	n Nilai Solusi Posit	` '	, , ,						
Data	Nilai Solusi Posit	tif(A+) dan Neg	c3	C4	C5				
Data A+		` '	, , ,	C4 3,5355339	C5 1,9188064				

Gambar 14. Halaman Matriks Terbobot

- Nilai Preferensi, lihat Gambar 15.

Data Jarak Solusi Ideal Positif(D+) dan Negatif(D-)

Alternatif	D+	D-
Pengolahan Citra Digital	2.80648	1.55601
Perancangan Sumber Daya Perusahaan	2.56147	2.50127
Data Mining	1.55601	2,80648

Data Nilai Preferensi(V)

v	Nama Alternatif
0.35667	Pengolahan Citra Digital
0.49405	Perancangan Sumber Daya Perusahaan
0.64332	Data Mining

Gambar 15. Halaman Nilai Preferensi

eISSN: 2477-3255, pISSN: 2086-4884 https://doi.org/10.31849/digitalzone.v11i1.3511

Ranking Nilai Nama Alternatif

1 0.64332 Data Mining

2 0.49405 Perancangan Sumber Daya Perusahaan

3 0.35667 Pengolahan Citra Digital

- Halaman Perangkingan, lihat Gambar 16.

Gambar 16. Halaman Perangkingan

Dari Gambar 16 terlihat bahwa untuk kasus mahasiswa semester IV, matakuliah Data Mining merupakan matakuliah pilihan prioritas yang perlu dipertimbangkan untuk diambil.

4. Kesimpulan

Perhitungan metode TOPSIS berdasarkan kriteria yang telah ditentukan yaitu tingkat kesulitan, referensi, lapangan pekerjaan, minat, dan bakat, serta bobot yang telah ditentukan pada masing-masing kriteria. Hasil akhir dari perhitungan adalah perangkingan matakuliah pilihan (alternatif) yang diurutkan dari nilai preferensi (v_i) yang tertinggi. Untuk Kasus mahasiswa semester IV matakuliah pilihan berdasarkan rangking adalah Data Mining, Perancangan Sumber Daya Perusahaan, dan Pengolahan Citra Digital. Sedangkan untuk mahasiswa semester VI matakuliah pilihan berdasarkan rangking adalah Tatakelola dan Audit Sistem Informasi, Pengolahan Citra Digital, dan Data Mining.

Daftar Pustaka

- [1] A. A. Chamid, "Penerapan Metode Topsis untuk Menentukan Prioritas Kondisi Rumah," *J. SIMETRIS*, vol. 7, no. 2, pp. 537–544, 2016.
- [2] A. Jumadi, Z. Arifin, and D. M. Khairina, "Sistem Pendukung Keputusan Pemberian Kredit Rumah Sejahtera Pada Nasabah Bank Pembangunan Daerah Kalimantan Timur dengan Metode TOPSIS," *J. Sist. Inf. Bisnis*, vol. 4, no. 3, pp. 156–163, 2016.
- [3] A. P. Windarto, "Implementasi Metode Topsis Dan Saw Dalam Memberikan Reward Pelanggan," *Klik Kumpul. J. Ilmu Komput.*, vol. 4, no. 1, p. 88, 2017.
- [4] D. Herawatie and E. Wuryanto, "Sistem Pendukung Keputusan Pemilihan Mahasiswa Berprestasi dengan Metode Fuzzy TOPSIS," *J. Inf. Syst. Eng. Bus. Intell.*, vol. 3, no. 2, p. 92, 2017.
- [5] E. Kurniawan, H. Mustafidah, and A. Shofiyani, "Metode TOPSIS untuk Menentukan Penerimaan Mahasiswa Baru Pendidikan Dokter di Universitas Muhammadiyah Purwokerto (TOPSIS Method to Determine New Students Admission at Medical School in University of," *Juita*, vol. 3, no. 4, pp. 201–206, 2015.
- [6] N. Palasara and T. Baidawi, "Penerapan Metode Topsis Pada Peningkatan Kinerja Karyawan," *J. Inform. UBSI*, vol. 5, no. 2, pp. 287–294, 2018.
- [7] M. Salim, "Sistem Pendukung Keputusan Penerimaan Calon Guru Honor di SMK Gotong Royong Gorontalo Menggunakan Metode Topsis," *J. Inform. Upgris*, vol. 4, no. 1, 2018.
- [8] F. S. Hutagalung, H. Mawengkang, and S. Efendi, "Kombinasi Simple Multy Attribute Rating (SMART) dan Technique For Order Preference by Similarity To Ideal Solution

- (TOPSIS) dalam Menentukan Kualitas Varietas Padi," *InfoTekJar (Jurnal Nas. Inform. dan Teknol. Jaringan)*, vol. 3, no. 2, pp. 109–115, 2019.
- [9] C. Surya, "Penilaian Kinerja Dosen Menggunakan Metode TOPSIS (Studi Kasus: Amik Mitra Gama)," *J. RESTI (Rekayasa Sist. dan Teknol. Informasi)*, vol. 2, no. 1, pp. 322–329, 2018.
- [10] A. M. Z. Wahyu, N. Safriadi, and H. S. Pratiwi, "Sistem Pendukung Keputusan Pemilihan Mata Kuliah Pilihan Menggunakan Metode Analytic Hierarchy Process (studi kasus : Jurusan Teknik Elektro Fakultas Teknik Universitas Tanjungpur a)," *J. Sist. dan Teknol. Inf.*, vol. 5, no. 2, pp. 160–163, 2017.
- [11] F. A. Setyaningsih, "Analisis Kinerja Technique For Order Preference By Similarity To Ideal Solution (TOPSIS) Untuk Pemilihan Program Studi," *J. Inform. J. Pengemb. IT Poltek Tegal*, vol. 2, no. 2, pp. 43–46, 2017.

Digital Zone: Jurnal Teknologi Informasi dan Komunikasi is licensed under a <u>Creative</u> Commons Attribution International (CC BY-SA 4.0)